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Overview
• Motivation: “The dose makes the poison”
• Risk = hazard vs. exposure
• Problem: Traditional approaches insufficient to screen thousands of 

chemicals
• Solution: New approach methodologies (NAMs)

• NAMs for hazard
• NAMs for exposure

• Problem: Hazard NAMs estimate biologically active concentrations. How to 
compare to external exposure rates?
• Solution: In vitro-in vivo extrapolation using high-throughput toxicokinetic 

modeling
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Scenario: You are exposed to 
chemicals

Inhalation

Ingestion

Dermal

Intravenous

Intramuscular

CC-BY Ali Karimian
3 of 39
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Scenario: You are exposed to 
chemicals

Things you might want to know….

• What chemicals are you exposed to? How much? How often?

• Do the chemicals get inside your body?

• If so, how much gets inside? 

• For example, what is the concentration of each chemical in 
your blood?

• Is that enough to cause any kind of health effect?
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External 
exposure

Internal dose = Amount/concentration of chemical 
or drug in one or more body tissues of interest



• Most non-food, non-drug chemicals, ranging from industrial waste to dyes to packing 
materials, are covered by the Toxic Substances Control Act (TSCA) and come under EPA’s 
purview

• Currently 41,953 “active” (currently-used) chemicals on TSCA inventory, and hundreds of new 
ones listed every year

• Need a way to rapidly prioritize chemicals for more detailed evaluation

Schmidt, C. W. (2016)

Difficulty level: Answer these questions for thousands of 
environmental chemicals, and for the whole population

Figure from https://www.epa.gov/assessing-and-
managing-chemicals-under-tsca/how-epa-evaluates-
safety-existing-chemicals

https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/how-epa-evaluates-safety-existing-chemicals


Paracelsus:  “The dose makes the poison”
“What is there that is not poison? All things are poison and nothing is
without poison. Solely the dose determines that a thing is not a
poison” — Paracelsus (1493-1541)

Hazard: Inherent property of an agent having the potential to cause adverse 
effects with exposure.

Exposure: Concentration or amount of an agent that reaches a target 
organism, system, or (sub)population in a specific frequency for a defined 
duration.

Dose: Total amount of an agent administered to, taken up by, or absorbed by 
an organism, system, or (sub)population.

Dose-response: Relationship between dose and adverse effect occurrence or 
magnitude.

Risk: The probability of an adverse effect in an organism, system, or 
(sub)population caused under specified circumstances by exposure to an 
agent.

(Definitions adapted from IPCS Risk Assessment Terminology, 2004) Slide adapted from John Wambaugh



Traditional hazard & dose-response data comes from 
studies in vivo, one chemical at a time

[Observe adverse effects in each dose group 
after days, weeks, months, or years of dosing]

Point of Departure 
(POD): Dose where 
adverse effects start 
to occur more than in 
control group (roughly 
speaking)

(this is simulated example data)



New approach methodologies for hazard: 
In vitro high-throughput screening (HTS) assays, 
e.g. ToxCast/Tox21

Concentration
Re

sp
on

se

Data: For each chemical, in vitro concentrations 
associated with bioactivity in each assay, if any

All data are public:
http://comptox.epa.gov/dashboard/
https://www.epa.gov/chemical-research/exploring-toxcast-
data-downloadable-data

Thousands of chemicals are screened in 
concentration-response across hundreds of in vitro
assays for various kinds of biological activity (binding, 
signaling, viability…) – now with transcriptomics!

[Schmidt 2009; Dix et al. 2007; Kavlock et al. 2018; Filer et 
al., 2016; Franzosa et al. 2021]

http://comptox.epa.gov/dashboard/
https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data


Hazard data is then extrapolated to develop a toxicity value:
a dose below which an adverse effect is considered unlikely
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Account for 
data 

availability (or 
lack thereof)

Account for 
measurement 

uncertainties & 
limitations of 
study design

Extrapolate 
from animal to 

human, or 
from in vitro to 

in vivo

Account for 
human 

variability
POD(s) Toxicity 

value

Chiu et al. (2018)
National Academies of Science (2009)
US EPA (2002)



Dose with 
potentially 
adverse 

effect

Sometimes chemicals are ranked based on 
hazard/toxicity data alone

Here are some fictitious toxicity values for 
three chemicals, shown as distributions

Poll: Which of these three chemicals 
poses the greatest concern for human 
health?
1. X
2. Y
3. Z

X Y Z



Dose with 
potentially 
adverse 

effect

Sometimes chemicals are ranked based on 
hazard/toxicity data alone

Chemical X has the lowest 
toxicity value, meaning it’s the 
most potent (produces adverse 
effects at the lowest dose).

But does that make it the most 
concerning?

X Y Z



Dose with 
potentially 
adverse 

effect

But “the dose makes the poison”: hazard/toxicity needs to be 
put in the context of exposure to assess risk

X Y Z

Daily 
exposure 

rate

When we know exposure, 
Chemical Z is actually the most 
concerning!

“Margin of exposure” (MOE) 
approach:
MOE = Potentially hazardous 
dose/Estimated exposure

Higher MOE = less potential risk
(specific MOE thresholds exist for specific 
regulatory risk-assessment contexts!)



Dose with 
potentially 
adverse 

effect

So how do we get information about exposure?

X Y Z

Daily 
exposure 

rate



Exposure is assessed by tracing a chemical from its 
source (where it is released) to where a “receptor” (a 
person, animal, or plant) interacts with it
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RECEPTOR

MEDIA
of exposure

USE and 
RELEASE

FATE & 
TRANSPORT

EXPOSURE 
(MEDIA + RECEPTOR)



Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

HumanRECEPTOR 
Population

MEDIA

EXPOSURE 
(MEDIA + RECEPTOR)

USE and 
RELEASE

Near-Field
Direct

Near-Field 
Indirect

Example: Human exposures from consumer products
• How much of what chemicals are in which consumer products & 

articles?
• How do people use these products? (Frequency, duration, amount; is 

it sprayed, poured, rinsed off, etc.?)

• How does the chemical move through the indoor environment?
• Indoor media monitoring
• Indoor fate & transport modeling
• Physical properties of product, chemical, indoor environment

Food Drinking 
Water

Dietary

• How do people interact with the indoor 
environment? (Inhalation rate, dust ingestion, 
dietary intake, etc.)

• What chemicals are found in people’s bodies?

FATE
&

TRANSPORT



Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

HumanRECEPTOR 
Population

MEDIA

EXPOSURE 
(MEDIA + RECEPTOR)

USE and 
RELEASE

Near-Field
Direct

Near-Field 
Indirect

Traditional exposure assessment: Gather detailed data for one 
chemical at a time, in specific exposure scenarios

• Identify all products containing Chemical X 
• Identify how people use each of these products

• Detailed models of fate & transport
• Detailed measurements of chemical & product 

properties
• Measure chemical in indoor air, dust, surfaces, food, 

drinking water
• Specific properties of indoor environment

Food Drinking 
Water

Dietary

• Detailed models of people interacting with 
indoor media

• Personal sampling methods (e.g. wearable 
monitors)

• Targeted biomonitoring: Measure chemical in 
people’s blood, urine, hair, etc.

FATE
&

TRANSPORT



Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

HumanRECEPTOR 
Population

MEDIA

EXPOSURE 
(MEDIA + RECEPTOR)

USE and 
RELEASE

Near-Field
Direct

Near-Field 
Indirect

Difficulty level: Get exposure data for thousands of 
environmental chemicals, and for the whole population

• Identify all products containing Chemical X 
• Identify how people use each of these products

• Detailed models of fate & transport
• Detailed measurements of chemical & product 

properties
• Measure chemical in indoor air, dust, surfaces, food, 

drinking water
• Specific properties of indoor environment

Food Drinking 
Water

Dietary

• Detailed models of people interacting with 
indoor media

• Personal sampling methods (e.g. wearable 
monitors)

• Targeted biomonitoring: Measure chemical in 
people’s blood, urine, hair, etc.

FATE
&

TRANSPORT



New Approach Methodologies (NAMs) for high-throughput 
exposure science: EPA’s ExpoCast project

RECEPTOR

MEDIA
of exposure

USE and 
RELEASE

INTERNAL 
DOSE/HAZARD

FATE & 
TRANSPORT

EXPOSURE 
(MEDIA + RECEPTOR)

TK/TD
POP. VAR

ExpoCast exposure NAMs aim to inform every part of the 
source-to-receptor exposure model, in ways that:
• identify and address key pathways of exposure
• can be applied rapidly, to large numbers of chemicals
• leverage existing information to make predictions for 

data-poor chemicals
• quantify error and uncertainty in predictions
• can be used to prioritize chemicals by potential risk
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Exposure NAM Class Description Traditional Approach

Cheminformatics
Curate & organize existing exposure data for large 
numbers of chemicals

Tools targeted at single chemical analyses by 
humans

Machine Learning
Fill data gaps using computer algorithms to make 
inferences based on existing data

Manual inspection of the data

Non-Targeted 
Measurements

Screen for hundreds of unknown chemicals in 
environmental media using advanced analytical & 
computational chemistry techniques

Targeted (chemical-specific) analyses

HTE Models
Source-to-receptor exposure models that can 
make predictions rapidly for large numbers of 
chemicals

Exposure models requiring detailed, 
chemical- and scenario-specific information

Consensus Modeling & 
Evaluation

Statistical approaches that use existing exposure 
data and model results for many chemicals to 
predict exposure for a new chemical (and evaluate 
predictive performance of specific HTE models)

Comparison of model predictions to data on 
a per chemical basis

RECEPTOR

MEDIA
of exposure

USE and 
RELEASE

INTERNAL 
DOSE/HAZARD

FATE & 
TRANSPORT

EXPOSURE 
(MEDIA + RECEPTOR)

TK/TD
POP. VAR



A key early ExpoCast result (2013): Consumer 
product exposures are an important pathway
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Binary indicator for 
indoor/consumer use — all by 
itself — explains ~10% of 
variability in exposure 
between chemicals.

And chemicals with 
indoor/consumer use had 
higher exposures.

Figure adapted from 
Wambaugh et al. (2013)



Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

HumanRECEPTOR 
Population

MEDIA

EXPOSURE 
(MEDIA + RECEPTOR)

USE and 
RELEASE

Near-Field
Direct

Near-Field 
Indirect

So, many (but not all!) ExpoCast efforts have focused on 
consumer products exposure pathways

• How much of what chemicals are in which consumer products & 
articles?

• How do people use these products? (Frequency, duration, amount; is 
it sprayed, poured, rinsed off, etc.?)

• How does the chemical move through the indoor 
environment?

• Indoor media monitoring
• Indoor fate & transport modeling

Food Drinking 
Water

Dietary

• How do people interact with the indoor 
environment? (Inhalation rate, dust ingestion, 
dietary intake, etc.)

• What chemicals are found in people’s bodies?

FATE
&

TRANSPORT



Chemical use & release for consumer products: Informatics approach to 
organizing existing data

Also linked to consumer habits and 
practices data

https://comptox.epa.gov/dashboard

CPCat

CPCPdb

Product 
Ingredient

Lists Suspect 
screening/

non-
targeted 
analysis

Functional 
Use Data

General use 
categories

Reported 
chemicals in 
products

Identification of 
chemicals in 
product samples

Chemical role 
in products 

Reported or estimated 
weight fraction

• CPDat integrates heterogeneous data on many chemicals & products 
from many different sources

• Makes these data machine-readable, batch-searchable
• Rapidly informs chemical use for consumer exposure scenario

Dionisio et al., 
2015

Dionisio et al., 
2018

Goldsmith et al., 
2014

Isaacs et al., 2018

Phillips et al., 2018

Phillips et al., 2017

Isaacs et al., 2014
Isaacs et al., 2020

https://comptox.epa.gov/dashboard


Probabilistic 
Predictions of 

Potential Chemical 
Uses

(including whether in 
consumer products)

Chemical use: For chemicals without consumer product use data: 
predict unknown functional uses with machine learning

Chemical Structure 
and Property Descriptors

humectant lubricating 
agent

perfumer pH 
stabilizeroxidizer

heat 
stabilizer

photo-
initiator

masking 
agenthair dye

organic 
pigment

flavorantflame 
retardant

film 
forming 

agent

foam 
boosting 

agent
foamer

reducer rheology 
modifier

skin 
protectant

skin condi-
tioner

soluble 
dye

catalyst chelator colorant crosslinker emollient emulsifier

fragrance

plasticizer

monomer

solvent

antistatic 
agent

anti-
oxidant

anti-
microbial

adhesion 
promoter

additive 
for rubber

additive 
for liquid 
system

whitenerwetting 
agent

viscosity 
controlling 

agent
vinylUV 

absorber
ubiquitoussurfactant

pre-
servative

oral care

hair condi-
tioner

emulsion 
stabilizer

buffer

additive

Phillips et al. (2017)

Successful 
Model

Failed
Model

Random Forest Classification 
Models

(Breiman, 2001) 
with five-fold cross validation

Chemical Functional Use Database (FUSE)
Positive Examples Negative Examples

https://comptox.epa.gov/dashboard

https://comptox.epa.gov/dashboard


Modeling exposure from source to receptor:
SHEDS-HT: a high-throughput population consumer exposure 
model (Isaacs et al., 2014)

• Chemical use data from CPDat
• Data on population variability in consumer 

habits & practices from literature
• Data on population variability in diet from CDC 

NHANES (national dietary survey data) 
(https://www.cdc.gov/nchs/nhanes/index.htm)

• Data on population daily activities from EPA 
CHAD (https://www.epa.gov/fera/consolidated-
human-activity-database-chad)

• Available as R package ‘ShedsHT’ 
https://github.com/HumanExposure/SHEDSHT
RPackage

https://www.cdc.gov/nchs/nhanes/index.htm
https://www.epa.gov/fera/consolidated-human-activity-database-chad
https://github.com/HumanExposure/SHEDSHTRPackage


Recycled Consumer 
Materials

Residential Dust

Rager et al., Env. Int., 2016

Phillips et al., Env. Sci. Tech. 2018

Non-Targeted Analysis: Which chemicals are found in consumer 
products? In indoor environmental media? In humans? 
(Sobus et al., 2018; Ulrich et al., 2019)

Consumer Product Emissions
from Different Substrates

Residential Air
Pooled Human Blood

Source and Release Fate and Transport Exposure

Lowe et al., 2018

Pilot: 20 Consumer Product Categories

Human Placenta

Rager et al., Repro. Tox. , 2020

Slide adapted from Kristin Isaacs



Non-targeted Measurement NAM: 
EPA’s Non-Targeted Analysis Collaborative Trial 
(ENTACT)

What NTA methods are available? What is the coverage of chemical 
universe and matrices? How do methods differ in their coverage?

Figures adapted 
from Ulrich et al.  

(2019)

Results from Part 1: Number of ToxCast substances 
correctly detected by three different NTA methods

Part 1. Blinded analysis of ten mixtures of 1269 total 
ToxCast substances 
Part 2. Blinded analysis of ToxCast mixtures spiked into 
environmentally relevant media (human serum, 
silicone wristbands, house dust)
Part 3. Develop reference spectra from individual 
ToxCast standards

Round-robin 
collaborative 
trial: many 
different labs 
test their NTA 
methods



What about exposure pathways other than 
consumer/residential?

Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

Human

Ecological
Flora and FaunaRECEPTOR 

Population

MEDIA

EXPOSURE 
(MEDIA + RECEPTOR)

Food Outdoor Air, Soil, Surface and 
Ground Water

Waste

Drinking 
Water

USE and 
RELEASE

Consumer

Occupational

Ambient

Worker

Ecological

Other Industry, 
Agriculture, etc.

Chemical Manufacturing 
and Processing

Far-Field EcologicalDietary
Near-Field

Direct
Near-Field 

Indirect
Occupational

Workplace 
Env.



High Throughput Exposure (HTE) models can predict exposures via key 
pathways (for chemicals with enough data to parameterize models)
Consumer (Near-Field) Pathways

SHEDS-HT (Isaacs et al., 2014)

Ambient (Far-Field) Pathways

RAIDAR-ICE (Li et al., 2018)

FINE (Shin et al., 2015)

UseTox (Rosenbaum et al., 2008)

RAIDAR (Arnot et al., 2006, 
2008)

Dietary Pathways

UseTox (Rosenbaum et al. (2008)

SHEDS-HT (Biryol et al., 2017)

Slide adapted from Kristin Isaacs



Aggregate exposures (over all pathways) 
can be inferred from population exposure 
biomonitoring

• Exposure biomonitoring measures internal body levels of 
various chemicals of interest, or their metabolites
• e.g. in blood, urine, hair, breastmilk, etc.

• A key source of exposure biomonitoring data is CDC NHANES 
(National Health & Nutrition Examination Survey)
• Large-scale, nationally-representative survey of US population
• 2-year cycles: starting in 1999, most recent published data 2016

• NHANES gathers various health & nutrition data 
• Previously mentioned: dietary intake survey (used in SHEDS-HT 

model)
• Including urine levels of 151 metabolites (mapping to 179 

possible parent chemicals) [see figure at right!]

• All data publicly available (anonymized) at 
https://www.cdc.gov/nchs/nhanes/index.htm

Wambaugh et al., 2013, 2014; Stanfield et al., in prep
Figure courtesy of Dr. Zachary Stanfield

https://www.cdc.gov/nchs/nhanes/index.htm


ExpoCast work: Bayesian inference of external exposures from 
internal biomonitoring data

Wambaugh et al., 2013, 2014
Stanfield et al., 2021

NHANES
urinary biomonitoring 

of metabolites

U1

U2

P1

P2

P3

P4

Map metabolites to 
parent compounds 
(probabilistic)

P1

P2

P3

P4

Infer median daily 
intake of parent 
compounds

(Assuming 
everything is at 
steady-state and 
urinary excretion 
only, so that daily 
urinary output = 
daily intake)



We can integrate all of 
these exposure models 
and data sources into a 
consensus model for 
aggregate exposure!

• Consensus models may be familiar 
from weather forecasting: e.g. 
predicting hurricane paths

• Consensus models essentially average
the individual model predictions

• A weighted average can be used to 
correct for model biases

• e.g. a model that usually predicts a path 
too far west

• e.g. a model that usually over-predicts 
storm intensity

• We can make an analogous 
consensus model for aggregate 
human daily intake!

Source: http://www.hurricanescience.org/science/forecast/models/modeltypes/ensemble/. Image 
credit: Timothy Marchok, NOAA/GFDL.

Individual model 
forecasts

Consensus 
model forecast

Actual storm 
path

http://www.hurricanescience.org/science/forecast/models/modeltypes/ensemble/


SEEM3: A consensus model for aggregate exposure
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Residual error = 
uncertainty

In
fe
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ed

 In
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ke
 R
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e

Exposure Predictors
(centered & scaled)

Slope = Weight of 
each predictor

Intercept = 
Exposure when 
all predictors at 
mean value 

Train model on inferred 
exposures from NHANES 
biomonitoring data

Exposure Predictors:
• Predictions of HT exposure 

models (USETox, RAIDAR, 
FINE, SHEDS-HT…)

• Chemical production 
volume (U.S.)

• Existing EPA pesticide 
exposure assessments

• Presence on Stockholm 
Convention list of banned 
persistent organic 
pollutants

Missing predictor data: 
Impute mean

P1 =

SEEM3 is a multiple linear regression!

Bayesian inference = 
Probabilistic estimates of 
intercept, slopes, and 
uncertainty

SEEM3 = Systematic Empirical Evaluation of Models, version 3
Ring et al. (2019)



SEEM3 includes pathways of exposure
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Uncertainty = 
pathway-
independent

In
fe

rr
ed

 In
ta

ke
 R

at
e

Exposure Predictors
(centered & scaled)

Slopes for each 
predictor vary by 
pathwayIntercepts vary 

by pathway

Ring et al. (2019)

Machine-learning model (random 
forest) predicts exposure 
pathway probability for each 
chemical:

• Consumer
• Dietary
• Industrial
• Pesticide

based on chemical structure & 
properties

Pathway-specific weights (slopes) 
for each predictor = predictive 
strength of that predictor for that 
pathway

(hence the “evaluation of 
models” in the SEEM3 name)



SEEM3 can predict median exposures for data-poor 
chemicals – and quantify uncertainty in the 
predictions
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Exposure Predictors
(centered & scaled)

Predictions available on 
https://comptox.epa.gov/dashboard

and as Supplemental Material to Ring et al. 
(2019)

Model available as R package: 
https://github.com/HumanExposure/SEEM3R
Package

There are SEEM3 
predicted median 
exposures for 687,359 
chemicals!
(Every compound with a 
structure in DSSTox library as 
of 2018)

https://comptox.epa.gov/dashboard
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FHumanExposure%2FSEEM3RPackage&data=04%7C01%7CRing.Caroline%40epa.gov%7Cad447aa768874f6cb26208d93b01cd90%7C88b378b367484867acf976aacbeca6a7%7C0%7C0%7C637605701194323063%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=%2BS4BK8EmvyIYRQzm20XezehBolmsTzmGC18NIhlyTqQ%3D&reserved=0


Web demonstration: How to find 
exposure data and predictions on the 
CompTox Chemicals Dashboard
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Concentration 
bioactive in vitro

(uM)

So, we can predict exposures using all of these clever computational 
tools. But how does that help us when we have in vitro hazard data only 
in the form of in vitro bioactive concentrations?

X Y Z

Daily 
exposure 

rate
(mg/kg/day)

Totally different 
units!



Need to link in vitro concentrations to in vivo exposures: 
in vitro-in vivo extrapolation (IVIVE) —
and we need to do IVIVE for thousands of chemicals and 
the whole population!

Equivalent exposure
Internal dose

37 of 39

Concentration 
with in vitro
bioactivity

[Tan et al. 2007;
Rotroff et al. 2010; 
Wetmore et al. 2012, 2013, 2015]

Compare

Predicted 
External 
Exposure



Mapping between in vitro bioactive concentration 
and internal dose is a toxicodynamics problem

Equivalent exposure
Internal dose

38 of 39

Concentration 
with in vitro
bioactivity

Compare

Predicted 
External 
Exposure

Toxicodynamics (TD): “what the 
chemical does to the body”
Requires mapping in vitro bioactivity to 
in vivo adverse outcomes.
Lots of work is being done on this, but 
it’s a hard problem.

For screening, we often just assume in 
vitro concentration = internal dose.



Mapping between internal dose and external 
exposure is a toxicokinetics problem

Equivalent exposure
Internal dose

39 of 39

Concentration 
with in vitro
bioactivity

Compare

Predicted 
External 
Exposure

Toxicokinetics (TK) describes ADME:
• Absorption: How does the chemical get 

absorbed into the body tissues?
• Distribution: Where does the chemical go 

inside the body?
• Metabolism: How do enzymes in the body 

break apart the chemical molecules?
• Excretion: How does the chemical leave the 

body?

[Tan et al. 2007;
Rotroff et al. 2010; 
Wetmore et al. 2012, 2013, 2015]



Mapping between internal dose and external 
exposure is a toxicokinetics problem

Equivalent exposure
Internal dose
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Concentration 
with in vitro
bioactivity

Compare

Predicted 
External 
Exposure

Toxicokinetics (TK) describes ADME:
• Absorption: How does the chemical get 

absorbed into the body tissues?
• Distribution: Where does the chemical go 

inside the body?
• Metabolism: How do enzymes in the body 

break apart the chemical molecules?
• Excretion: How does the chemical leave the 

body?

Reverse TK: Go from internal 
dose “backwards” to find 
corresponding exposure

[Tan et al. 2007;
Rotroff et al. 2010; 
Wetmore et al. 2012, 2013, 2015]



TK models describe ADME mathematically
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Concentration vs. time in each compartment

Body as mass-balance system
Defined by parameters describing ADME



High-throughput IVIVE (rapid, for thousands of 
chemicals) requires high-throughput TK (HTTK)
Characteristics of HTTK model:
• Generic: same model structure can be applied to all chemicals
• Minimal chemical-specific TK parameters

• Only describe the most important chemical-specific ADME processes
• Can only run model for chemicals where we know these parameters — so the fewer 

chemical-specific parameters, the more chemicals we can run
• Chemical-specific TK parameters that can be measured in vitro or predicted in 

silico, rather than having to be measured in vivo
• Use existing in vitro experimental methods to measure TK parameters – pharmaceutical 

industry has been working on this for years
• Not too computationally intensive: Feasible to solve rapidly for thousands of 

chemicals
• Allows quantification of uncertainty & variability in its predictions



High-throughput TK (HTTK)

Generic physiologically-based TK (PBTK) 
model

.
.

.
.

..
.

.
. .1 2

In vitro measurements of the minimal chemical-
specific TK model parameters (hepatic clearance 
rate & plasma protein binding)+

Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

Wambaugh et al. (2015)
Pearce et al. (2017a)

Ring et al. (2017)
Linakis et al. (2020)

Cryo-preserved 
hepatocyte suspension
Shibata et al. (2002)

Rapid Equilibrium Dialysis (RED) 
Waters et al. (2008)

Assume clearance 
via first-order 
hepatic metabolism 
& passive renal 
filtration



Full concentration vs. time 
simulations in all compartment 
are still too computationally 
intensive — need to simplify 
further

For chemical screening 
purposes, we are usually 
interested in what happens 
with long-term, low-level 
exposures

So we focus on the steady-state 
plasma concentration (Css)
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1 mg/kg/day for 20 days



In generic PBTK model, Css has a linear relationship with dose
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• Graphically: 
• start with the “target” concentration on the 

y-axis (in vitro bioactive concentration 
𝐶!!, target)

• go over to the Css-dose line
• drop down to the x-axis
• then read off the “administered equivalent 

dose” (AED) on the x-axis.

• Mathematically: AED = Css, target
slope

• Interpretation: AED = the external dose 
that would produce an internal body 
concentration equal to the in vitro
bioactive concentration

Wetmore et al. (2012)

Linear Css-dose relationship makes reverse TK quick & easy
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So, we can do IVIVE rapidly for large numbers of 
chemicals — if we can get the slope of the Css-
dose line for each chemical
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Q: What determines the slope of the line? 
A: The TK model parameters that describe ADME.

Chemical-specific parameters How do we get the parameter values?

Intrinsic hepatic clearance rate (metabolism) Measured in HT in vitro assays (Rotroff et al. 2010; 
Wetmore et al. 2012, 2014, 2015; Wambaugh et al. 2019)Fraction unbound to plasma protein

Tissue partition coefficients (ratio of conc. in tissue to 
conc. in plasma)

Predict in silico from phys-chem properties and tissue 
properties (Pearce et al., 2017b)

Physiological parameters (chemical-independent)

Tissue masses (including body weight)

Gathered from data available in the published 
literature [Wambaugh et al. 2015; Pearce et al. 2017a]

Tissue blood flows

Glomerular filtration rate 
(passive renal clearance)

Hepatocellularity



So to do high-throughput IVIVE for thousands of 
chemicals, all we need is the in vitro measured 
chemical-specific TK parameters!
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HTTK models, data, & algorithms are freely available in R package httk

R package httk
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (HTTK)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific TK data for 987 chemicals
• Described in Pearce et al. (2017a)

!""#$%&&'()*+(,#-./01"+.-2&#3143205!""4

https://cran.r-project.org/package=httk
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Population variability in IVIVE can be quantified using a 
Monte Carlo approach: “HTTK-Pop” (Ring et al., 2017)
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Sample from population 
distribution of TK parameters 
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Calculate Css-dose slope for 
each sampled set of TK 
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Get resulting distribution of 
equivalent doses
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exposure distribution to 
calculate potential risk
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Compare the low-end equivalent dose 
to the high-end potential exposure
to calculate “Bioactivity-Exposure Ratio” (BER).

In vitro HTS 
bioactivity  

equivalent dose 
using HTTK

Potential 
exposure from 

HT models

BER > 1
(Lower Priority) 

BER ~ 1
(Medium Priority)

BER < 1
(Higher Priority)

This is inverse of MOE
MOE = Exposure / Hazard
BER = Hazard / Exposure



First: Get AC50 value. ToxCast AC50s can be found on 
the CompTox Chemicals Dashboard.

Lower-end ToxCast AC50 for 
this chemical = 0.26 uM

Example: Using httk to find an equivalent dose & BER for 
a low-end ToxCast AC50 for benzo(a)pyrene
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To calculate population equivalent dose, use httk function 
calc_mc_oral_equiv()

> library(httk)

> set.seed(42)

> #Steady-state equivalent dose (mg/kg BW/day) to produce 0.26 uM in plasma:

calc_mc_oral_equiv(conc=0.26,

chem.name="benzo(a)pyrene", 
which.quantile = c(0.95, 0.5, 0.05),

input.units = "uM",

output.units = "mgpkgpday“)

uM concentration converted to mgpkgpday dose for 0.95 0.5 0.05 quantile.

95%      50%       5% 

0.003821 0.019090 0.067080 
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Compare equivalent dose to HT exposure predictions 
available on EPA CompTox Chemicals Dashboard

Monte Carlo equivalent dose from 
httk::calc_mc_oral_equiv():
uM concentration converted to 
mgpkgpday dose for 0.95 0.5 
0.05 quantile.

95%      50%       5% 

0.003821 0.019090 0.067080 

HT exposure predictions from Dashboard: 
median = 1.16e-6; 
upper bound on median = 1.32e-2 
mg/kg/day 

Ring et al. 2019, Wambaugh et al. 201456



BER: Graphical comparison of HTTK-predicted equivalent 
dose for ToxCast AC50, vs. HT exposure prediction
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BER = 1.32 e-2 / 0.003821 = 0.3

BER < 1, so this would likely be a 
higher-priority chemical  



Example: BER-based prioritization of 84 chemicals, 
using IVIVE of ToxCast AC50s. 

Population distributions 
of equivalent dose for 
10th percentile ToxCast 
AC50 (bottom point = 
most-sensitive 5%)

Population median 
aggregate exposures 
with 95% credible 
interval, inferred from 
NHANES urinary 
biomonitoring data

Updated version of analysis from 
Ring et al. (2017)

Bioactivity-exposure 
ratio (BER)



An even-more high-throughput application: BER prioritization 
of 7104 chemicals based on HTTK-Pop IVIVE of ToxCast AC50s 
and HT exposure predictions from SEEM3 model

1083 chemicals with BER < 1
(higher-priority)

6020 chemicals with BER > 1
(lower-priority)



• “The dose makes the poison”: risk is a function of both 
hazard and exposure

• Hazard: When in vivo hazard data are not available, we can 
use in vitro high-throughput screening (HTS) assays

• Exposure: estimation requires tracing chemical from source 
to receptor

• When detailed chemical-specific exposure data are not 
available, we can use exposure NAMs to fill data gaps and 
make exposure predictions

• To compare in vitro HTS data to in vivo exposure estimates, 
we use high-throughput toxicokinetics (HTTK) -- generic 
model that can be parameterized with in vitro data

• The bioactivity-exposure ratio (BER) framework allows rapid 
risk-based chemical prioritization

• Hazard, exposure, and TK data and models are publicly 
available through the CompTox Chemicals Dashboard and as 
R packages

Summary

The views expressed in this presentation 
are those of the author and do not 

necessarily reflect the views or policies 
of the U.S. EPA

Potential 
Exposure Rate

mg/kg BW/day

Potential hazard 
from in vitro

converted to dose 
by  HTTK

Lower
Risk

Medium 
Risk

Higher
Risk
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