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Overview

* Motivation: “The dose makes the poison”
* Risk = hazard vs. exposure

* Problem: Traditional approaches insufficient to screen thousands of
chemicals

 Solution: New approach methodologies (NAMs)
* NAMs for hazard
 NAMs for exposure

* Problem: Hazard NAMs estimate biologically active concentrations. How to
compare to external exposure rates?

* Solution: In vitro-in vivo extrapolation using high-throughput toxicokinetic
modeling




o)
\ Y4

A

nited States

ironmental Protection
gency

:=M

>mC
>

Scenario: You are exposed to
chemicals

Inhalation

Ingestion

Intramuscular

Intravenous

Dermal

CC-BY Ali Karimian



https://www.flickr.com/photos/karimian/

Scenario: You are exposed to
chemicals

External
exposure . .
Things you might want to know....

* What chemicals are you exposed to? How much? How often?
* Do the chemicals get inside your body?

* |f so, how much gets inside?

* For example, what is the concentration of each chemical in
your blood?

* |s that enough to cause any kind of health effect?

Internal dose = Amount/concentration of chemical
or drug in one or more body tissues of interest
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s Difficulty level: Answer these questions for thousands of
environmental chemicals, and for the whole population

* Most non-food, non-drug chemicals, ranging from industrial waste to dyes to packing
materials, are covered by the Toxic Substances Control Act (TSCA) and come under EPA’s

purview

* Currently 41,953 “active” (currently-used) chemicals on TSCA inventory, and hundreds of new

ones listed every year

* Need a way to rapidly prioritize chemicals for more detailed evaluation

Chemical designated
High-Priority
for Risk Evaluation

Prioritization

Chemical designated
Low-Priority

EPA determination of
Unreasonable Risk

Risk Evaluation

EPA determination of
No Unreasonable Risk

Impose Restrictions to
Eliminate the
Unreasonable Risk

Risk Management

Figure from https://www.epa.gov/assessing-and-
managing-chemicals-under-tsca/how-epa-evaluates-

safety-existing-chemicals

Schmidt, C. W. (2016)


https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/how-epa-evaluates-safety-existing-chemicals

<EPA

United States
Environmental Protection

Paracelsus: “The dose makes the poison”

“What is there that is not poison? All things are poison and nothing is | -ALTER{ vio/ SET* QUISVVSESSE POTEST?
without poison. Solely the dose determines that a thing is not a ¥ 7 gl | ‘4
poison” — Paracelsus (1493-1541) s s

Hazard: Inherent property of an agent having the potential to cause adverse
effects with exposure.

Exposure: Concentration or amount of an agent that reaches a target
organism, system, or (sub)population in a specific frequency for a defined

duration.

Dose: Total amount of an agent administered to, taken up by, or absorbed by
an organism, system, or (sub)population.

Dose-response: Relationship between dose and adverse effect occurrence or |~ — LSS
maghitude. I-t‘AVR}Z(lJ + THEOPHRASTI # AB /HOHEN

| AHEIM * EFFIGIES #SVE FETATIS + s |
Risk: The probability of an adverse effect in an organism, system, or | - A—-{ e et --:.{ ¢
(sub)population caused under specified circumstances by exposure to an f - — '
agent.

(Definitions adapted from IPCS Risk Assessment Terminology, 2004) Slide adapted from John Wambaugh



Traditional hazard & dose-response data comes from
studies in vivo, one chemical at a time

[Observe adverse effects in each dose group
after days, weeks, months, or years of dosing]
301 ——

Point of Departure S
(POD): Dose where — O

adverse effects start o ——
to occur more thanin
control group (roughly )
speaking)

¢ 1 _ ——

Response

- —
-1 — ¢

¢
—1 (this is simulated example data)

0.0 25 5.0 75 10.0
Dose
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we New approach methodologies for hazard:
In vitro high-throughput screening (HTS) assays,
e.g. ToxCast/Tox21

Thousands of chemicals are screened in
concentration-response across hundreds of in vitro
assays for various kinds of biological activity (binding,
signaling, viability...) — now with transcriptomics!

[Schmidt 2009; Dix et al. 2007; Kavlock et al. 2018; Filer et
al., 2016; Franzosa et al. 2021]

AC10
ACB
ACC

AC50

Data: For each chemical, in vitro concentrations
associated with bioactivity in each assay, if any

Response

All data are public:
http://comptox.epa.gov/dashboard/

https://www.epa.gov/chemical-research/exploring-toxcast-
- data-downloadable-data

Concentration


http://comptox.epa.gov/dashboard/
https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data

Hazard data is then extrapolated to develop a toxicity value:
a dose below which an adverse effect is considered unlikely

Account for Extrapolate
measurement from animal to Account for Toxicity
uncertainties & human, or human |
e S S value
limitations of from in vitro to variability
study design in vivo

Account for
data

availability (or
lack thereof)

Chiu et al. (2018)
National Academies of Science (2009)
US EPA (2002)




SEPA . .
Vi Sometimes chemicals are ranked based on

hazard/toxicity data alone

A
Dose with
Here are some fictitious toxicity values for potentially
: . adverse
three chemicals, shown as distributions offect

Poll: Which of these three chemicals
poses the greatest concern for human

health?
1. X
2. Y
3. Z




e e SOMeEtimes chemicals are ranked based on
hazard/toxicity data alone

A
Dose with
. potentially
Chemical X has the lowest adverse
toxicity value, meaning it’s the effect

most potent (produces adverse
effects at the lowest dose).

But does that make it the most
concerning?




Tenees BUE “the dose makes the poison”: hazard/toxicity needs to be
put in the context of exposure to assess risk
A
Dose with
When we know exposure, potentially
Chemical Z is actually the most aduerse
concerning!

“Margin of exposure” (MOE)
approach:
MOE = Potentially hazardous

dose/Estimated exposure

Daily
exposure

Higher MOE = less potential risk rate
(specific MOE thresholds exist for specific
regulatory risk-assessment contexts!)




7 So how do we get information about exposure?

> [
Rk s

A

Dose with
potentially
adverse
effect

Daily
exposure
rate
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Exposure is assessed by tracing a chemical from its
source (where it is released) to where a “receptor” (a
person, animal, or plant) interacts with it

USE and FATE & MEDIA EXPOSURE

RELEASE TRANSPORT (MEDIA + RECEPTOR)
of exposure RECEPTOR
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Consumer
Products and o
Durable Goods

USE and
RELEASE

FATE
&
ANSP
MEDIA Indoor Air, Dust, Surfaces
EXPOSURE Near-Field  Near-Field
ndirect

(MEDIA + RECEPTOR)

&=

Human *

RECEPTOR
Population

Example: Human exposures from consumer products

How much of what chemicals are in which consumer products &
articles?

How do people use these products? (Frequency, duration, amount; is
it sprayed, poured, rinsed off, etc.?)

* How does the chemical move through the indoor environment?

* Indoor media monitoring

Indoor fate & transport modeling

Physical properties of product, chemical, indoor environment

Drinking

Food
Water

ietary

How do people interact with the indoor
environment? (Inhalation rate, dust ingestion,
dietary intake, etc.)

What chemicals are found in people’s bodies?



“EPA
Y7t Traditional exposure assessment: Gather detailed data for one

chemical at a time, in specific exposure scenarios

Consumer * Identify all products containing Chemical X
Products and * Identify how people use each of these products
Durable Goods

USE and
RELEASE

* Detailed models of fate & transport

* Detailed measurements of chemical & product
FA;E properties
ANSP * Measure chemical in indoor air, dust, surfaces, food,
drinking water
» Specific properties of indoor environment
MEDIA Indoor Air, Dust, Surfaces Drinking
Food
Water
EXPOSURE Ne .-Fleld Ne r'-FleId letry
(MEDIA + RECEPTOR) ndirect
* Detailed models of people interacting with
indoor media
= Personal sampling methods (e.g. wearable

RECEPTOR
Population

Human monitors)
e Targeted biomonitoring: Measure chemical in
people’s blood, urine, hair, etc.




EPA
Vo Difficulty level: Get exposure data for thousands of

environmental chemicals, and for the whole population

Consumer * Identify all products containing Chemical X
Products and * Identify how people use each of these products
Durable Goods

USE and
RELEASE

* Detailed models of fate & transport

* Detailed measurements of chemical & product
FA;E properties
ANSP * Measure chemical in indoor air, dust, surfaces, food,
drinking water
» Specific properties of indoor environment
MEDIA Indoor Air, Dust, Surfaces Drinking
Food
Water
EXPOSURE Ne .-Fleld Ne r'-FleId letry
(MEDIA + RECEPTOR) ndirect
* Detailed models of people interacting with
indoor media
= Personal sampling methods (e.g. wearable

RECEPTOR
Population

Human monitors)
e Targeted biomonitoring: Measure chemical in
people’s blood, urine, hair, etc.
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New Approach Methodologies (NAMSs) for high-throughput
exposure science: EPA’s ExpoCast project

FATE & MEDIA EXPOSURE TK/TD [ INTERNAL }
TRANSPORT DOSE/HAZARD
of exposure (MEDIA + RECEPTOR) RECEPTOR POP. VAR /

ExpoCast exposure NAMs aim to inform every part of the
source-to-receptor exposure model, in ways that:

USE and
RELEASE

identify and address key pathways of exposure —
i e Current Opinion in Toxicology |

e can be applied rapidly, to large numbers of chemicals Available online 31 July 2019 ____5

* |everage existing information to make predictions for e r—
data-poor chemicals New Approach Methodologies for Exposure

e quantify error and uncertainty in predictions Science

e can be used to prioritize chemicals by potential risk John F. Wambaugh | & &, ane C. Bare %, Courtney C. Carignan°, Kathie L. Dionisio *, Robin .

Dodson > ¢, Olivier Jolliet 7, Xiaoyu Liu 8, David E. Meyer 2, Seth R. Newton *, Katherine A. Phillips ¢,
Paul S. Price ¥, Caroline L. Ring °, Hyeong-Moo Shin 1, Jon R. Sobus ¢, Tamara Tal 11, Elin M. Ulrich

4 Daniel A. Vallero %, Barbara A. Wetmore *, Kristin K. Isaacs *




FATE & MEDIA EXPOSURE TK/TD [ INTERNAL ]
TRANSPORT DOSE/HAZARD
RELEASE of exposure (MEDIA + RECEPTOR) RECEPTOR POP. VAR /

Exposure NAM Class Description Traditional Approach
Curate & organize existing exposure data for large Tools targeted at single chemical analyses b
Cheminformatics & ) & eXp & g 8 y y
numbers of chemicals humans
. Fill data gaps using computer algorithms to make , )
Machine Learning , Sl < .p. e Manual inspection of the data
inferences based on existing data

Screen for hundreds of unknown chemicals in
environmental media using advanced analytical & Targeted (chemical-specific) analyses

computational chemistry techniques
Source-to-receptor exposure models that can

Non-Targeted
W EEHEH IS

Exposure models requiring detailed,

HTE Models make predictions rapidly for large numbers of , , . :
, chemical- and scenario-specific information
chemicals
Statistical approaches that use existing exposure
o6 =N E i data and model results for many chemicals to Comparison of model predictions to data on
Evaluation predict exposure for a new chemical (and evaluate a per chemical basis

predictive performance of specific HTE models)



Environmental Protecti

A Im<ey early ExpoCast result (2013): Consumer

product exposures are an important pathway

Binary indicator for
indoor/consumer use — all by
itself — explains ~10% of
variability in exposure
between chemicals.

And chemicals with

indoor/consumer use had
higher exposures.

A
V-
A

. /
S

1e-04 - % 7/

NearField
-0~ Far Field

—A— Near Field

1e-07 -

Inferred Exposure

1e-10 -

Figure adapted from
Wambaugh et al. (2013)

I | 1
1e-10 1e-07 1e-04 1e-01
Model Predicted Exposure



"’EPASO many (but not all!) ExpoCast efforts have focused on

consumer products exposure pathways
How much of what chemicals are in which consumer products &
Consumer articles?

Products and * How do people use these products? (Frequency, duration, amount; is
Durable Goods . .
it sprayed, poured, rinsed off, etc.?)

USE and
RELEASE

FATE * How does the chemical move through the indoor
& environment?
ANSP * Indoor media monitoring
* Indoor fate & transport modeling
MEDIA Indoor Air, Dust, Surfaces Drinking
Food
Water
EXPOSURE Ne .-Fleld Near-Field letry

ndirect

(MEDIA + RECEPTOR)

* How do people interact with the indoor
environment? (Inhalation rate, dust ingestion,

= dietary intake, etc.)

Human * What chemicals are found in people’s bodies?

RECEPTOR
Population
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Chemical use & release for consumer products: Informatics approach to
organizing existing data

Reported
> chemicals in

Goldsmith et al.

2014
products

General use
categories

Dionisio et al.,
2015

Isaacs et al., 2018

Also linked to consumer habits and
practices data

Isaacs et al., 2014
Isaacs et al., 2020

Reported or estimated

weight fraction https://comptox.epa.gov/dashboard

Product
Ingredient

|dentification of
chemicals in

i uspect
Lists scree'?“n 7\ Product samples
g Phillips et al., 2018
CPCPdb non-
targeted

Qnalysi Chemical role

in products
Phillips et al., 2017

Functional
Use Data

OePDat

Chemlcal and Products Database

Dionisio et al.,
2018

CPDat integrates heterogeneous data on many chemicals & products
from many different sources

Makes these data machine-readable, batch-searchable
Rapidly informs chemical use for consumer exposure scenario


https://comptox.epa.gov/dashboard

“EPA  Chemical use: For chemicals without consumer product use data:
predict unknown functional uses with machine learning

Environmental Protection
Agency

https://comptox.epa.gov/dashboard

Chemical Functional Use Database (FUSE)

Positive Examples ‘ Negative Examples Random FOfeS; CI'aSSiﬁcatiO”
Models

additive additive_for_liquid_system additive_for_rubber adhesion_promaoter antimicroblal antioxidant antistatic_agent

Chemical Structure

o
@

(Breiman, 2001)

A | |
. additive s . . . o
and Property Descriptors | additive_J| fortiquia J| 2dctive [if adhesion s Wk i with five-fold cross validation
02 B cicd for rubber promoter microbial oxidant agent
oo buffer catalyst chelator colorant i i
0.6 1[ 10
0al Successful
buffer catalyst chelator colorant crosslinker emollient emulsifier
02 Model
o0 emulsion_stabilizer film_forming_agent flame_retardant flavorant foam_boosting_agent foamer fragrance
0.6 ] I 1 [ 1| ]
o . film foam
1 emulsion formin flame flavorant boostin foamer fragrance
024 stabilizer J retardant & g Failed
agent agent
00 hair_s it hair_dye heat_ i | icati agent masking_agent M Od e I
06 ] | |
0.4 ha|r condi- T he_a.t humectant lubricating masking gy e
02 tioner stabilizer agent agent ohe .
00 » Probabilistic
oral_care organic_pigment oxidizer ph_ il plastic
06 1 1 ] . .
. Predictions of
o oral care UgpnE oxidizer erfumer ph Rhotos lasticizer
02 pigment P stabilizer initiator P Pote ntia | Ch em ica |
P e 0.0
06 preservative | reducer rheclogy_modifer ] skin_conditioner ' skin_protectant 1 soluble_dye ] solvent Uses
04 pre- “ H rheology ‘ skin condi- skin soluble . . .
o2+ servative veducel modifier tioner protectant dye soluany ( In CI u d In g W h et h erin
00 surfactant | igui uv_ { winyl f viscosity_controlling_agent wetting_agent whitener CO n S u m e r p rOd u CtS)
0.6
viscosity .
0.4 = uv . . wetting .
surfactant ubiquitous vinyl controlling whitener el
I l F‘ absorber )I o agent Phillips et al. (2017)

o
=)


https://comptox.epa.gov/dashboard

“EPA Modeling exposure from source to receptor:
SHEDS-HT: a high-throughput population consumer exposure

Environmental Protection
Agency

model (Isaacs et al., 2014)

i 5 ces
Dietary
W e |ncidental Ingestion
Direct Direct
Ingestion of Inhalation of
Product Vapor from
Product
r
s I ! Direct b
rect Derma 2 Inhalation |
5 Application T T g8 of Aerosol )
Of Product From |

/ \ Product
— Indirect
Exposure ¢
Exposure to c‘:::\s‘:ant
A o Bolus Applied Emission of
|w Product Chemical Z
Down the Drain 4

Release of Chemical

Chemical use data from CPDat

Data on population variability in consumer
habits & practices from literature

Data on population variability in diet from CDC
NHANES (national dietary survey data)
(https://www.cdc.gov/nchs/nhanes/index.htm)

Data on population daily activities from EPA
CHAD (https://www.epa.gov/fera/consolidated-
human-activity-database-chad)

Available as R package ‘ShedsHT’
https://github.com/HumanExposure/SHEDSHT

RPackage



https://www.cdc.gov/nchs/nhanes/index.htm
https://www.epa.gov/fera/consolidated-human-activity-database-chad
https://github.com/HumanExposure/SHEDSHTRPackage

wEPA Non-Targeted Analysis: Which chemicals are found in consumer

United States
Environmental Protection

products? In indoor environmental media? In humans?

(Sobus et al., 2018; Ulrich et al., 2019)
Source and Release Fate and Transport Exposure

Pilot: 20 Consumer Product Categories Residential Air
Pooled Human Blood

' 100% COTTON

- MACHIRE WasH
14 COLD WATER
- TUMELE DRY LOW
“REMOUE FREMPTLY
NO BLEACH
Bl MADE M U.S.A.

Phillips et al., Env. Sci. Tech. 2018
Human Placenta

Recycled Consumer
Materials

Consumer Product Emissions
from Different Substrates

Rager et al., Env. Int., 2016

Lowe et al., 018

Slide adapted from Kristin Isaacs



0N
VEPA Non-targeted Measurement NAM: @i Duke B Round-robin
EPA’s Non-Targeted Analysis Collaborative Trial | @mex eaw ABSCEX | ollaborative
73 SAN DIEGO STATE
(ENTACT) LS ras . trial: many
: . . oemsien 05U different labs
What NTA methods are available? What is the coverage of chemical - test their NTA
UNIVERSITY Labora
[ ices? meth iffer in their coverage? N e
universe and matrices? How do methods differ in their coverage o, @) (©) methods
Part 1. Ten ToxCast mixtures Part 2. Three standardized exposure relevant extracts @ l_\w Leco @?aIZEPA
Unaltered Fortified e e -
Q C ‘ ® ™ — E— = i
| | BE= T aE=. @6
o0 9@® Je—— = ~— o o Not detected

Part 3. Individual ToxCast standards @ @/. .
e —— - 3 -
: ® o
.. & T H Oregon State University- Outdoor air exposed silicone bands

i - &

- e = ==
L sesssases: |

= | NIST SRM 2585- Organic Contaminants in House Dust

Figures adapted
from Ulrich et al.
(2019)

Sl

Part 1. Blinded analysis of ten mixtures of 1269 total
ToxCast substances

Part 2. Blinded analysis of ToxCast mixtures spiked into GC ESI- ES|+
environmentally relevant media (human serum,
silicone wristbands, house dust)

Part 3. Develop reference spectra from individual
ToxCast standards

Results from Part 1: Number of ToxCast substances
correctly detected by three different NTA methods
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e \Nat about exposure pathways other than

consumer/residential?

Other Industry,

Agriculture, etc. ) _
Chemical Manufacturing

and Processing

\

— /

USE and Consumer Occupatipnal
Products and
RELEASE Durable Goods \L

Ecological

Workplace Ambient

sumer Env.
N 2 pe

Waste

/N

MEDIA Indoor Air, Dust, Surfaces Food Drinking . Outdoor Air, Soil, Surface and
Water Ground Water
Near-Field Near-Field . .
EXPOSURE di Occypational Dietary ar-Fie Ecological
(MEDIA + RECEPTOR) ndirect

/ - Ecological
/ Flora and Fauna

Worker

RECEPTOR
Population

Human




SEPA High Throughput Exposure (HTE) models can predict exposures via key

pathways (for chemicals with enough data to parameterize models)
Consumer (Near-Field) Pathways Ambient (Far-Field) Pathways Dietary Pathways

SHEDS-HT (Isaacs et al., 2014
( ) UseTox (Rosenbaum et al., 2008) UseTox (Rosenbaum et al. (2008)

RAIDAR-ICE (Li et al., 2018)

RAIDAR-ICEAG
A

SHEDS-HT (Biryol et al., 2017)

Risk Assessment,
[Dentification And Ranking
Indoor & Consumer Exposure

FINE (Shin et al., 2015)

2008)

0

R’ =061

)
¢

&

egate exposures (mg/kg-BWiday)

Log predicted median aggregati P
& &

lA /40'
s\ 740

< <€«
4> Indoor Air (M,) 4>

Pathway
® BOTH
ecP

®FC

-10 -8 -6 -4
Log inferred median exposures (mg/kg-BW/day)

<€ carpet (M) | Vinyl Floors (M,) =>

Slide adapted from Kristin Isaacs
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A
aeeeAggregate exposures (over all pathways)

can be inferred from population exposure

biomonitoring
* Exposure biomonitoring measures internal body levels of
various chemicals of interest, or their metabolites
* e.g.in blood, urine, hair, breastmilk, etc.
* A key source of exposure biomonitoring data is CDC NHANES
(National Health & Nutrition Examination Survey)

* Large-scale, nationally-representative survey of US population
e 2-year cycles: starting in 1999, most recent published data 2016

 NHANES gathers various health & nutrition data

. Prea/iolsjsly mentioned: dietary intake survey (used in SHEDS-HT
mode

* Including urine levels of 151 metabolites (mapping to 179
possible parent chemicals) [see figure at right!f

 All data publicly available (anonymized) at
https://www.cdc.gov/nchs/nhanes/index.htm

Wambaugh et al., 2013, 2014; Stanfield et al., in prep

] Figure courtesy of Dr. Zachary Stanfield

Metabolite Log Mean Concentration (mg/kg/day) by Cohort
- 5,

I 100NN N NN T

99-00 01-02 03-04 05-06 07-08 09-10 11-12 13-14 15-16


https://www.cdc.gov/nchs/nhanes/index.htm

SEPA ExpoCast work: Bayesian inference of external exposures from

internal biomonitoring data

Map metabolites to
arent compounds
NHANES ? robabilistiF::) } i - g "
urinary biomonitoring P !nfer median daily .
of metabolites intake of parent —
—_—— - compounds
[ 0 (Assuming o
| everything is at T
steady-state and
I . , »  P3
urinary excretion
I only, so that daily 1
\ urinary output =
- e daily intake) T
» P4
Wambaugh et al., 2013, 2014

- Stanfield et al., 2021




Vgnit_edggﬁs ~ We can integrate all of
these exposure models 2005 Troploal Cyolone Trooke
and data sources into a term; AL 1505 (RI

B 2}, b ,.»/ LA AEMN
consensus model for Individual model
forecasts

aggregate exposure!

* Consensus models may be familiar
from weather forecasting: e.g.
predicting hurricane paths

== (Consensus
model forecast

== Actual storm
path

* Consensus models essentially average
the individual model predictions

* A weighted average can be used to
correct for model biases

* e.g.a model that usually predicts a path
too far west

e e.g.a model that usually over-predicts
storm intensity

* We can make an analogous
consensus model for aggregate
human daily intake!

ol odw

- http://www.hurricanescience.org/science/forecast/models/modeltypes/ensemble/



http://www.hurricanescience.org/science/forecast/models/modeltypes/ensemble/

“omnenn SEEM3: A consensus model for aggregate exposure

SEEM3 = Systematic Empirical Evaluation of Models, version 3
Ring et al. (2019)

SEEM3 is a multiple linear regression!

Train model on inferred Exposure Predictors:

exposures from NHANES ° « Predictions of HT exposure
biomonitoring data ! models (USETox, RAIDAR,
T o | Residual error = FINE, SHEDS-HT...)
P1 - o - uncertainty * Chemical production
1 8 volume (U.S.)
Bayesian inference = _ﬁ * Existing EPA pesticide
Probabilistic estimates of -’ exposure assessments
intercept, slopes, and E . Presencg on .Stockholm
uncertainty c Con\{entlon list qf banned
, persistent organic
Intercept = Slope = Weight of pollutants
Exposure when each predictor

Missing predictor data:

all predictors at Exposure Predictors Impute mean

mean value (centered & scaled)




arree - SEEM3 includes pathways of exposure

Ring et al. (2019)

Machine-learning model (random
forest) predicts exposure
pathway probability for each
chemical:

* Consumer
* Dietary

* Industrial
* Pesticide

based on chemical structure &
properties

Intercepts vary

by pathway

Inferred Intake Rate

Uncertainty =
pathway-
independent

Slopes for each
predictor vary by
pathway

Exposure Predictors
(centered & scaled)

Pathway-specific weights (slopes)
for each predictor = predictive
strength of that predictor for that
pathway

(hence the “evaluation of
models” in the SEEM3 name)



... SEEM3 can predict median exposures for data-poor
chemicals — and quantify uncertainty in the
predictions
L
S
(©
oc
()
I
There are SEEM3 g Predictions available on
predicted median g o https://comptox.epa.gov/dashboard
exposures for 687,359 th 1 o o and as Supplemental Material to Ring et al.
chemicals! I= (2019)
(Every compound with a I Model available as R package:
structure in DSSTox library as | https://github.com/HumanExposure/SEEM3R
of 2018) 1 Package
Exposure Predictors

(centered & scaled)



https://comptox.epa.gov/dashboard
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FHumanExposure%2FSEEM3RPackage&data=04%7C01%7CRing.Caroline%40epa.gov%7Cad447aa768874f6cb26208d93b01cd90%7C88b378b367484867acf976aacbeca6a7%7C0%7C0%7C637605701194323063%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=%2BS4BK8EmvyIYRQzm20XezehBolmsTzmGC18NIhlyTqQ%3D&reserved=0

Environmental Protection
AAAAAA

Web demonstration: How to find
exposure data and predictions on the
CompTox Chemicals Dashboard




“EPA  So, we can predict exposures using all of these clever computational
tools. But how does that help us when we have in vitro hazard data only
in the form of in vitro bioactive Cchentrations?

o g g g
O 3]
g <<z

Concentration
bioactive in vitro

(uM)

Daily
exposure
rate

(mg/kg/day)

\

Totally different
units!




\‘%EPAa ~ Need to link in vitro concentrations to in vivo exposures:

in vitro-in vivo extrapolation (IVIVE) —
and we need to do IVIVE for thousands of chemicals and

the whole population!

Equivalent exposure Concentration

S Internal dose with in vitro
T s bioactivity

Compare

v

Predicted

AC10
ACB
ACC

AC50

External

Exposure [Tan et al. 2007;
Rotroff et al. 2010;
Wetmore et al. 2012, 2013, 2015]

N\




“ " Mapping between in vitro bioactive concentration
and internal dose is a toxicodynamics problem

Equivalent exposure Concentration

< Internal dose with in vitro
T s ‘ bioactivity

Compare Toxicodynamics (TD): “what the
chemical does to the body”
Requires mapping in vitro bioactivity to

in vivo adverse outcomes.
Lots of work is being done on this, but

Predicted it’s a hard problem.

External
Exposure

For screening, we often just assume in
vitro concentration = internal dose.
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Mapping between internal dose and external
exposure is a toxicokinetics problem

Equivalent exposure

)

Compare

v

Predicted

External
Exposure

Toxicokineti

does the chemical get
the body tissues?

absorbed i

* Distributio
inside the body:

* Metabolis ow.do enzymes in the body
break apart the chemical molecules?

ere does the chemical go

* Excretion: How does the chemical leave the
body?

Concentration
with in vitro
bioactivity

[Tan et al. 2007;
Rotroff et al. 2010;
Wetmore et al. 2012, 2013, 2015]
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Mapping between internal dose and external
exposure is a toxicokinetics problem

. A
Equivalent exposure "’ Concentration

= Internal dose with in vitro
() . o

T i! bioactivity

e
Compare Toxicokineti -
¢ * Absorption: H oes the chemical get Reverse TK: Go from internal
absorbed into the body tissues? dose “backwards” to find

* Distribution:
Predicted inside the body:

External * Metabolis do enzymes in the body
Exposure break apart the chemical molecules?

ere does the chemical go corresponding exposure

[Tan et al. 2007;
* Excretion: How does the chemical leave the Rotroff et al. 2010;

body? Wetmore et al. 2012, 2013, 2015]
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Body as mass-balance system

Lung Tissue

Defined by parameters describing ADME

o Laxg Blood Qeardiag
Gut Lumen
l 1{gutabs
Gat Tissue Q
& Gut Blood  |+—2b
2 Liver Tissue qut g
= e
m = 5 <t
2l oL ” ' Liver Blood By =N
g metabolism Qliver E_U
= 2
Rest of Body
— Body Blood Qrest
Kidney Tissue
< : Qkidnev
41 of 39 ¢ Kidney Blood |« -
(QGFR

Ckidney

Cliver

Cplasma

TK models describe ADME mathematically

Concentration vs. time in each compartment

40 -
30-

20-

60 -

4 JENNENSNNN

0.0 25 50 75 10.0
Days



High-throughput \VIVE (rapid, for thousands of
chemicals) requires high-throughput TK (HTTK)

Characteristics of HTTK model:
* Generic: same model structure can be applied to all chemicals

* Minimal chemical-specific TK parameters
* Only describe the most important chemical-specific ADME processes
e Can only run model for chemicals where we know these parameters — so the fewer
chemical-specific parameters, the more chemicals we can run

* Chemical-specific TK parameters that can be measured in vitro or predicted in
silico, rather than having to be measured in vivo

* Use existing in vitro experimental methods to measure TK parameters — pharmaceutical
industry has been working on this for years

* Not too computationally intensive: Feasible to solve rapidly for thousands of
chemicals

* Allows quantification of uncertainty & variability in its predictions
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High-throughput TK (HTTK)

Generic physiologically-based TK (PBTK)

model
Assume clearance Lung Tissue |
. . cardiac
via first-order = [ Lxxg Blood g |
hepatic metabolism e Tuncen
& passive renal T Koutabs
filtration ‘f;‘"t;f::: Ot
[
2 Liver Tissue qut ;
Eo [ Liver Blood oy g.:.
g C'Ln‘letgolism Q]iver ;_g
= 2
Wambaugh et al. (2015) TR

Pearce et al. (2017a)
Ring et al. (2017) < Body Blood
Linakis et al. (2020)

QICS[

Kidney Tissue

¥ Kidney Blood :Qk‘dn°-"

h
Qcrr

In vitro measurements of the minimal chemical-
specific TK model parameters (hepatic clearance

rate & plasma protein binding) Cryo-preserved

\ hepatocyte suspension
Shibata et al. (2002)

: |
@g@
: |
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: |
“
: |
B
omy IS

w? - "*

=
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I
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I

Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)
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Full concentration vs. time
simulations in all compartment
are still too computationally
intensive — need to simplify
further

For chemical screening
purposes, we are usually
interested in what happens
with long-term, low-level
exposures

So we focus on the steady-state
plasma concentration (Css)

Ckidney

Cliver

Cplasma

40 -

o0

20-

10 -

80 -

ol tl.

40 -

1:57

1.0+

Ao

1 mg/kg/day for 20 days

0.0-

0.0 25 5.0 75 10.0
Days
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In generic PBTK model, Css has a linear relationship with dose
Dose — 05 — 1 — 15 ;%
120- 5 4
> 80- -§
£
é 40- 8
5 Prediction (line)
0- @)
jzz % Slope = C, for 1 mg/kg/day
§ 100 - _Ué’)\
50- 8
§ &
15- . l\]l\]l\Jk\lk\'k\' |
g 10 N M\W .\J.\l.\ll\}\lk R
5 KW 0 Daily Dose (mg/kg/day)

45




s Linear Css-dose relationship makes reverse TK quick & easy

* Graphically:

e start with the “target” concentration on the
y-axis (in vitro bioactive concentration
Css, target)

e go over to the Css-dose line

 drop down to the x-axis

* then read off the “administered equivalent
dose” (AED) on the x-axis.

 Mathematically: AED = ngé,lg?)reget A Slope = C,, for 1 mg/kg/day

* Interpretation: AED = the external dose
that would produce an internal body
concentration equal to the in vitro Css, target F = =
bioactive concentration

Css (uM)

-

0 AED  Daily Dose (mg/kg/day)

Wetmore et al. (2012)



e 50, We can do IVIVE rapidly for large numbers of
chemicals — if we can get the slope of the Css-
dose line for each chemical

) Internal dose - -
Equivalent TK steady- associated SRECHEGRON
exposure state model with adverse lech in .w.tro

J bioactivity

T effect
Compare
8 Prediction (line)
Predicted Slope = C, for 1 mg/kg/day

SE]
Exposure

0 Daily Dose (mg/kg/day)




soees Q0 What determines the slope of the line?
A: The TK model parameters that describe ADME.

Chemical-specific parameters How do we get the parameter values?

Intrinsic hepatic clearance rate (metabolism) Measured in HT in vitro assays (Rotroff et al. 2010;
Wetmore et al. 2012, 2014, 2015; Wambaugh et al. 2019)

Fraction unbound to plasma protein

Tissue partition coefficients (ratio of conc. in tissue to Predict in silico from phys-chem properties and tissue
conc. in plasma) properties (Pearce et al., 2017b)

Physiological parameters (chemical-independent) _

Tissue masses (including body weight)

Tissue blood flows
Gathered from data available in the published

Glomerular filtration rate .
literature [Wambaugh et al. 2015; Pearce et al. 2017a]

(passive renal clearance)

Hepatocellularity




s S0 1O do high-throughput IVIVE for thousands of
chemicals, all we need is the in vitro measured
chemical-specific TK parameters!

) Internal dose - -
Equivalent TK steady- associated SRECHEGRON
exposure state model with adverse lech in .w.tro

J bioactivity

T effect
Compare
8 Prediction (line)
Predicted Slope = C, for 1 mg/kg/day
External E
Exposure 4
1 2 =

0 Daily Dose (mg/kg/day)
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aarereer HTTK models, data, & algorithms are freely available in R package httk
https://CRAN.R-project.org/package=httk

R CRAN - Package httk X + = X
< C @ cran.r-project.org/web/packages/httk/index.html Q ¥ @ o ‘
I Apps @ Absence Request % Travel RequestFor.. BB REMD-HTTK (&) Confluence W Bitbucket (&) CompTox Dashboard -4 EHP @ Change Password

httk: High-Throughput Toxicokinetics

Functions and data tables for simulation and statistical analysis of chemical toxicokinetics ("TK") as in Pearce et al. (2017) <d0i:10.18637/js5.v079.104>. Chemical-specific in vitro data have been obtained from relatively high
throughput experiments. Both physiologically-based ("PBTK") and empirical (e.g., one compartment) "TK" models can be parameterized for several hundred chemicals and multiple species. These models are solved efficiently,
often using compiled (C-based) code. A Monte Carlo sampler is included for simulating biclogical variability (Ring et al., 2017 <dei:10.1016/j.envint. 2017.06.004>) and measurement limitations. Calibrated methods are included
for predicting tissue:plasma partition coefficients and volume of distribution (Pg ation ("IVIVE") of
high throughput screening data (e.g.. Tox21, ToxCast) to real-world exposures v

R package httk

Depends: R(=2.10)
Imports: deSolve, msm_ data.table. survey, mvtnorm, truncnorm, stat

Suggests: ggplot2, knitr, rmarkdown. R.rsp. GGally. gplots, scales. En [ ] O pe n SO u rce’ t ra n S pa re nt’ a n d pe e r_ olorspace. cowplot,

ggrepel. dplyr. forcats, smatr, gtools, gridExtra
Published: 2020-03-02 H H
Author: John Wambaugh [aut, cre]. Robert Pearce [aut]. Ca reVI ewe d to O I S a n d d ata fo r h Ig h 1. Nisha Sipes
[ctb]. Barbara Wetmore [ctb]. Woodrow Setzer [ctb]

Maintainer: John Wambaugh <wambaugh.john at epa.gov= th rough put tOXico ki netics (HTTK)

BugReports: https://github.com USEPA/CompTox-ExpoCast-httk

e GPL:3 | | *  Available publicly for free statistical
URL: https:/'www.epa.gov/chemical-research'rapid-chemical-exp|

NeedsCompilation: yes

Citation: htt;c citation info SOftwa re R

Materials: NEWS

CRAN checks: itk reults *  Allows in vitro-in vivo extrapolation

— downloads 806/month (IVIVE) and physiologically-based
Reference manual: httk.pdf

Vignettes: Frank et al (2018); Creating IVIVE Figure (Fig.6) toxicokinetics ( P BTK)

Honda et al. (2019): Updated Armitage et al. (2014) Model

ksl el A mibasaeme | © Human-specific TK data for 987 chemicals
 Described in Pearce et al. (2017a)
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“Complication: Population biological variability in TK means that
there is a distribution of Css-dose slopes — and thus a
distribution of equivalent doses for any given in vitro bioactive
concentration

mg/kg BW/day
A

-
Dose with
potentially

adverse effect

Potential > . cre s
exposure > Median Sensitivity

More Sensitive
(conc = lower dose)

.ss= Less Sensitive
(conc = higher dose)

Steady-state Concentration (uM)

e o =
0 Dose Rate (mg/kg/day)
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e Population variability in IVIVE can be quantified using a
Monte Carlo approach: “HTTK-Pop” (Ring et al., 2017)

Sample from population Calculate Css-dose slope for Compare equivalent dose
distribution of TK parameters each sampled set of TK distribution to potential
based on CDC NHANES data model parameters exposure distribution to

calculate potential risk

Get resulting distribution of

equivalent doses
Fup
mg/kg BW/day
N
A -
-’
7’
h..__ S | Most-Sensitive 5% Dose with
.................... % potentially
8

Vliver adverse effect
_____ P S A —)
...... Least-Sensitive 5%
Dose Rate (mg/kg/day) Potential
s exposure

(+ other params)




~wen.. COmpare the low-end equivalent dose
to the high-end potential exposure
to calculate “Bioactivity-Exposure Ratio” (BER).

mg/kg BW/day

AN
This is inverse of MOE
In vitro HTS MOE = Exposure / Hazard
bioactivity BER = Hazard / Exposure
equivalent dose
using HTTK
BER <1
(Higher Priority)
Potential
exposure from
HT models BER N 1 o
(Medium Priority)
BER > 1

] (Lower Priority)
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@ CompTox Chemicals Dashboard X

< &

N United States
" Environmental Protection
" Agency

DETAILS
EXECUTIVE SUMMARY
PROPERTIES
ENV. FATE/TRANSPORT
HAZARD
P SAFETY
» ADME
P EXPOSURE
¥ BIOACTIVITY
e
EDSP21
TOXCAST/TOX21
PUBCHEM
TOXCAST: MODELS

SIMILAR COMPOUNDS

@ comptox.epa.gov/dashboard/d

Home

Example: Using httk to find an equivalent dose & BER for

+

Advanced Search  Batch Search  Lists v

Benzo(a)pyrene

Searched by DSSTox Substance Id.

Predictions

50-32-8 | DTXSID2020139

a low-end ToxCast AC50 for benzo(a)pyrene
O E—

Downloads

First: Get AC50 value. ToxCast AC50s can be found on
the CompTox Chemicals Dashboard.

Chemical Activity Summary €)

O TOXCAST DATA

© ASSAY DETAILS

&
showan > ] g )
channel 2 55_% S
nuclear receptor 2 : ;
channel 1 50 V2
background measurement : :
cell morphology 1 :f
18
L elee 4, 'S
dna binding )

35 X

]

1

30 )

1

1

Lower-end ToxCast AC50 for |

1

20 H H - '

this chemical = 0.26 uM ;

15 :

]

1

10 :

1

5- :

° 1

@ o [5) QT ° ACS50 (uM) 1

0 T T TTTTTIT T TTTTTIT T TTTTT T T TTTTTIT T T TTTThT T T TTTTTIT T T TTTTTT T T IIIIII‘I
0.00001 10001 0.0 0.01 0.1 1 10 100 1000

AC50 (uM): 0.26

Scaled top: 1.58 @
Assay Endpoint Name: TOX21_SSH_3T3_GLI3_Antagonist

Gene Symbol:

Organism: mouse

Tissue: embryo

Assay Format Type: cell-based

Biological Process Target: regulation of transcription factor
activity

Detection Technology: Luciferase-coupled ATP quantitation
Analysis Direction: positive

Intended Target Family: dna binding

Description: Data from the assay component
TOX21_SSH_3T3_GLI3_Antagonist was analyzed into 1 assay
endpoint. This assay endpoint, TOX21_SSH_3T3_GLI3_Antagonist,
was analyzed in the positive fitting direction relative to DMSO as
the negative control and baseline of activity. Using a type of
inducible reporter, loss-of-signal activity can be used to
understand changes in the reporter gene as they relate to the
gene GLI3. Furthermore, this assay endpoint can be referred to as
a primary readout, because this assay has produced multiple
assay endpoints where this one serves a reporter gene function.




<EPA

United States
Environmental Protection
Agency

To calculate population equivalent dose, use httk function
calc mc oral equiv ()

> library (httk)
> set.seed (42)
> #Steady-state equivalent dose (mg/kg BW/day) to produce 0.26 uM in plasma:
calc mc oral equiv (conc=0.26,
chem.name="benzo (a) pyrene",
which.quantile = ¢(0.95, 0.5, 0.05),
input.units = "uM",
output.units = "mgpkgpday")
uM concentration converted to mgpkgpday dose for 0.95 0.5 0.05 quantile.
95% 50% 5%
0.003821 0.019090 0.067080
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Compare equivalent dose to HT exposure predictions

available on EPA CompTox Chemicals Dashboard

Monte Carlo equivalent dose from
httk::calc mc oral equiv():
uM concentration converted to

mgpkgpday dose for 0.95 0.5
0.05 quantile.

95% 50% 5%
0.003821 0.019090 0.067080

< c

HT exposure predictions from Dashboard:
median = 1.16e-6;

upper bound on median = 1.32e-2
mg/kg/day

@ CompTox Chemicals Dashboard X

United States

DETAILS

EXECUTIVE SUMMARY

PROPERTIES

ENV. FATE/TRANSPORT

HAZARD

b SAFETY

» ADME

v EXPOSURE

PRODUCT & USE CATEGORIES

CHEMICAL WEIGHT FRACTION

CHEMICAL FUNCTIONAL USE

—

EXPOSURE PREDICTIONS |

PRODUCTION VOLUME

-+

& comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID2020139#exposure-predictions

n
N EPA Environmental Protection Home Advanced Search Batch Search Lists ¥  Predictions
\’ Agency

. Download ¥

Downloads Share ¥ Submit Comment

Benzo(a)pyrene
50-32-8 | DTXSID2020139

Searched by DSSTox Substance Id.

Exposure Predictions (mg/kg-bw/day)

Demographic ¥ Medi ¥ 95th Percentile g
Ages 6-11 1.43e-6 7.69e-5
Ages 12-19 1.35e-6 6.44e-5
Ages 20-65 1.02e-6 7.63e-5
Ages 65+ 7.51e-7 5.12e-5
BMI > 30 9.44e-7 6.76e-5
BMI < 30 1.16e-6 7.71e-5
Repro. Age Femal 141e-6 7.19e-5
Females 1.28e-6 1.26e-4
Mal 929-7 6,5_29—5
Total 1.16e-6 1.32e-2
10 record

Ring et al

. 2019, Wambaugh et al. 2014
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aieewn BER: Graphical comparison of HTTK-predicted equivalent

dose for ToxCast AC50, vs. HT exposure prediction

1e-01-
& 103
;g) e E] HT exposure
-
E BER = 1.32 e-2/0.003821 = 0.3 E3 HTTK equiv. dose
BER < 1, so this would likely be a
higher-priority chemical
1e-05-

Benzo(a)pyrene
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SEPA

tion of 84 chemicals,

1Za

101

BER-based pri

Example

using

1e+03

IVIVE of ToxCast AC50s.

E httk equivalent dose

Population distributions
of equivalent dose for

10t percentile ToxCast

AC50 (bottom point

most-sensitive 5%)
aggregate exposures

Population median
with 95% credible

interval, inferred from

NHANES urinary

E NHANES inferred exposure

1e+02

1e+01

1e+00

Bioactivity-exposure

ratio (BER)

1e-01
1e-06

Aepyby/6w ‘ainsodxs 10 asop ‘AInb3

1e-09

biomonitoring data

1e-10

Updated version of analysis from

Ring et al. (2017)




An even-more high-throughput application: BER prioritization
of 7104 chemicals based on HTTK-Pop IVIVE of ToxCast AC50s
and I—_IT exposure predictions from SEEM3 model

le+121

II|1

I|1

6020 chemicals with BER>1 ¢
(lower-priority)

IIII1 T

1e+10 %

IIII1

IIII1 T

1e+08 &

™

T II|1 T

1e+061

IIIII1

T IIII1

1e+04 1

U IIIII1

|

|

o 1e+02
L

0 1e+00

IIII1 L III|1 T

1e-021

III1

IIII1 T

1e-04 1

™

III|1 T,

1e-06+

Illr1

1083 chemicals with BER < 1
(higher-priority)

!

1e-08+

. )

II|1 IIIII1

o
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* “The dose makes the poison”: risk is a function of both mg/kg BW/day

hazard and exposure

Potential hazard
from in vitro
converted to dose

e Exposure: estimation requires tracing chemical from source by HTTK
to receptor

 Hazard: When in vivo hazard data are not available, we can
use in vitro high-throughput screening (HTS) assays

 When detailed chemical-specific exposure data are not
available, we can use exposure NAMs to fill data gaps and Potential
make exposure predictions Exposure Rate

e To compare in vitro HTS data to in vivo exposure estimates,
we use high-throughput toxicokinetics (HTTK) -- generic
model that can be parameterized with in vitro data

Lower Medium Higher
e The bioactivity-exposure ratio (BER) framework allows rapid Risk Risk Risk
risk-based chemical prioritization
e Hazard, exposure, and TK data and models are publicly The views expressed in this presentation
available through the CompTox Chemicals Dashboard and as are those of the author and do not

necessarily reflect the views or policies

mmm  Rpackages of the UL, EPA
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