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Optimization of Clustering Algorithms for Grouping of Complex Chemical 
Substances Based on Chemical and Biological Characteristics

Data Analysis: Clustering & Dimensionality Reduction

Analytical Chemistry Profiles Bioactivity Profiles

Conclusions

Key References

Data Integration & Processing

Ø Texas A&M Superfund program goal: To develop comprehensive tools and models for
addressing exposure to chemical mixtures during environmental emergency-related
contamination events.

Ø Aim: To design a framework for optimal grouping of chemical mixtures based on their
chemical characteristics and bioactivity properties, and facilitate comparative
assessment of their human health impacts through read-across.

Ø Approach: In order to explore the most optimal clustering algorithms that may be used to
establish the chemical and biological similarity between complex substances or mixtures,
we used several recent examples of chemical substances of Unknown or Variable
composition Complex reaction products, and Biological materials (UVCB substances).
UVCBs present a major challenge for registrations under the REACH and US High
Production Volume regulatory programs. In addition to frequent variations in their chemical
composition, many gaps in available toxicity data preclude confident categorization of
these substances for read across applications.

Ø Here, we present a comprehensive computational approach using different clustering
algorithms to categorize UVCBs according to global similarities in a) their chemical
composition using Gas Chromatography-Gas Chromatography Flame Ionization Detector
(GCXGC-FID) and Ion Mobility Mass Spectrometry (IM-MS) [1], b) their bioactivities from in
vitro screening in human cells [2].

Analytical 
Chemistry Profiles

Bioactivity 
Profiles

Hierarchical Clustering

• Kendall Correlation
• Spearman Correlation
• Pearson Correlation

Ø The clustering 
algorithms are 
evaluated with the 
Fowlkes–Mallows 
index in order to 
provide a comparative 
assessment for the 
clustering quality. 

• Ward’s Method
• Average Linkage
• Complete Linkage

Data Acquisition: Targeted & Untargeted Analysis

Future Work

Ø Prototypical high-production volume UVCBs, can be categorized using global similarities
in their physico-chemical descriptors, global compositional analysis using Ion Mobility-
Mass Spectrometry, and bioactivity profiles using multi-parametric HCS of iPSC-derived
cell types.

Ø Fowlkes-Mallows index has been implemented to optimize clustering algorithms.

Ø A combinatorial approach using quantitative chemical analysis, high-content in vitro
screenings, and subsequent computational data integration and visualization will be 
performed which is anticipated to improve chemical-biological read-across 
applications.

Ø Other dimensionality reduction techniques will be tested to further improve the 
framework.

Hierarchical
Clustering

• 9	Clustering	
Methods	
Explored

Principle	
Component	
Analysis

• Dimensionality	
Reduction

Fowlkes–
Mallows 

Index
• Comparative	
Analysis

Ø Grimm	FA	et.	al.	“A	chemical–biological	similarity-based	grouping	of	complex	substances	as	a	prototype	approach	for	
evaluating	chemical	alternatives”.	Green	Chemistry,	2016,	18,	4407.

Ø Grimm	FA	et.	al.	“Grouping	of	Petroleum	Substances	as	Example	UVCBs	by	Ion	Mobility-Mass	Spectrometry	to	Enable	
Chemical	Composition-Based	Read	Across”.	Environmental	Science	&	Technology.	2017,	51	(12),	pp	7197–7207

Ø Onel,	M.;	Kieslich,	C.	A.;	Guzman,	Y.	A.;	Floudas,	C.	A.;	Pistikopoulos,	E.	N. "Big	Data	Approach	to	Batch	Process	
Monitoring:	Simultaneous	Fault	Detection	and	Identification	Using	Nonlinear	Support	Vector	Machine-based	Feature	
Selection".	Computers	&	Chemical	Engineering,	2017.	(Under	Review).

Ø Fowlkes,	E.	B.;	Mallows,	C.	L.	 "A	Method	for	Comparing	Two	Hierarchical	Clusterings". Journal	of	the	American	
Statistical	Association. 1983,	78 (383):	553.

Motivation:	Categorization	of	high-dimensional	analytical	data	by	
exploring	different	clustering	algorithms	and	dimensionality	reduction	

techniques.
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Ward’s Method – Kendall Correlation
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